सिनसिनाटी विश्वविद्यालय के इंजीनियरों द्वारा दो तरफ फायदा का प्रयोग
-
तकनीक को प्रकाशित किया गया है
-
एथिलीन महत्वपूर्ण रसायन माना गया है
-
इससे वायुमंडल के कॉर्बन हटाया जा सकेगा
राष्ट्रीय खबर
रांचीः हम सभी दुनिया में तेजी से बढ़ते प्रदूषण और पर्यावरण के खतरों से अच्छी तरह अवगत है। इसलिए हर स्तर पर पारिस्थितिकी को नुकसान पहुंचाने वाले ग्रीन हाउस गैसों की मात्रा कम करने की कवायद चल रही है। यह चेतावनी साफ है कि अगर इसपर रोक नहीं लगी तो पूरी धरती पर तबाही आ जाएगी।
इसी चुनौती के बीच सिनसिनाटी विश्वविद्यालय के इंजीनियरों ने जलवायु परिवर्तन को संबोधित करते हुए कार्बन डाइऑक्साइड को मूल्यवान उत्पादों में परिवर्तित करने का एक अधिक कुशल तरीका बनाया। यूसी के कॉलेज ऑफ इंजीनियरिंग एंड एप्लाइड साइंस में अपनी केमिकल इंजीनियरिंग लैब में, एसोसिएट प्रोफेसर जिंगजी वू और उनकी टीम ने पाया कि एक संशोधित तांबा उत्प्रेरक कार्बन डाइऑक्साइड के इलेक्ट्रोकेमिकल रूपांतरण को एथिलीन, प्लास्टिक में प्रमुख घटक और असंख्य अन्य उपयोगों में सुधारता है।
एथिलीन को दुनिया का सबसे महत्वपूर्ण रसायन कहा गया है। यह निश्चित रूप से सबसे अधिक उत्पादित रसायनों में से एक है, जिसका उपयोग वस्त्रों से लेकर एंटीफ्रीज से लेकर विनाइल तक हर चीज में किया जाता है। रासायनिक उद्योग ने 2022 में 225 मिलियन मीट्रिक टन एथिलीन उत्पन्न किया। वू ने कहा कि यह प्रक्रिया जीवाश्म ईंधन के बजाय हरित ऊर्जा के माध्यम से एक दिन एथिलीन का उत्पादन करने का वादा करती है। इसमें वायुमंडल से कार्बन हटाने का अतिरिक्त लाभ है।
वू ने कहा, एथिलीन विश्व स्तर पर एक महत्वपूर्ण मंच रसायन है, लेकिन इसके उत्पादन के लिए पारंपरिक भाप-क्रैकिंग प्रक्रिया पर्याप्त कार्बन डाइऑक्साइड उत्सर्जित करती है। जीवाश्म ईंधन पर निर्भर रहने के बजाय कार्बन डाइऑक्साइड को फीडस्टॉक के रूप में उपयोग करके, हम प्रभावी ढंग से कार्बन डाइऑक्साइड का पुनर्चक्रण कर सकते हैं। इस शोध पर यह अध्ययन नेचर केमिकल इंजीनियरिंग जर्नल में प्रकाशित हुआ था।
मुख्य लेखक और यूसी स्नातक झेंगयुआन ली सहित वू के छात्रों ने राइस यूनिवर्सिटी, ओक रिज नेशनल लेबोरेटरी, ब्रुकहेवन नेशनल लेबोरेटरी, स्टोनी ब्रुक यूनिवर्सिटी और एरिज़ोना स्टेट यूनिवर्सिटी के साथ सहयोग किया। ली को पिछले साल कॉलेज ऑफ इंजीनियरिंग एंड एप्लाइड साइंस से प्रतिष्ठित स्नातक छात्र पुरस्कार मिला था।
कार्बन डाइऑक्साइड के इलेक्ट्रोकैटलिटिक रूपांतरण से दो प्राथमिक कार्बन उत्पाद, एथिलीन और इथेनॉल उत्पन्न होते हैं। शोधकर्ताओं ने पाया कि संशोधित तांबे उत्प्रेरक का उपयोग करने से अधिक एथिलीन उत्पन्न होता है। मुख्य लेखक ली ने कहा, हमारा शोध इलेक्ट्रोकेमिकल कॉर्बन डॉईऑक्साइड कटौती के दौरान एथिलीन और इथेनॉल के बीच विचलन में आवश्यक अंतर्दृष्टि प्रदान करता है और एथिलीन की ओर चयनात्मकता को निर्देशित करने के लिए एक व्यवहार्य दृष्टिकोण का प्रस्ताव करता है।
वू ने कहा, इससे एथिलीन चयनात्मकता में 50 प्रतिशत की प्रभावशाली वृद्धि होती है। आदर्श रूप से, लक्ष्य कई उत्पादों के बजाय एक ही उत्पाद का उत्पादन करना है। अमेरिकी ऊर्जा विभाग के ऊर्जा दक्षता और नवीकरणीय ऊर्जा कार्यालय द्वारा प्रायोजित यह शोध अब औद्योगिक दक्षता और डीकार्बोनाइजेशन कार्यालय जहां भी संभव हो उद्योग में जीवाश्म ईंधन और कार्बन उत्सर्जन को कम करने के प्रयासों का नेतृत्व कर रहा है।
ली ने कहा कि अगला कदम प्रक्रिया को और अधिक व्यावसायिक रूप से व्यवहार्य बनाने के लिए इसे परिष्कृत करना है। रूपांतरण प्रणाली दक्षता खो देती है क्योंकि प्रतिक्रिया के उपोत्पाद जैसे पोटेशियम हाइड्रॉक्साइड तांबे के उत्प्रेरक पर बनने लगते हैं। ली ने कहा, व्यावसायिक तैनाती के लिए इलेक्ट्रोड स्थिरता में सुधार किया जाना चाहिए।
हमारा अगला ध्यान स्थिरता को बढ़ाना और इसके संचालन को 1,000 से 100,000 घंटे तक बढ़ाना है। वू ने कहा कि ये नई प्रौद्योगिकियां रासायनिक उद्योग को हरित और अधिक ऊर्जा कुशल बनाने में मदद करेंगी। वू ने कहा, मुख्य उद्देश्य नवीकरणीय बिजली और टिकाऊ फीडस्टॉक का उपयोग करके रासायनिक उत्पादन को डीकार्बोनाइज करना है। कार्बन डाइऑक्साइड को एथिलीन में विद्युतीकृत करना रासायनिक क्षेत्र को डीकार्बोनाइजिंग करने में एक महत्वपूर्ण प्रगति का प्रतीक है।